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FULT FACE WITH HEMISPHERICAL DEPRESSIONS* 

By Thomas W. Tyner 

SUMMARY 

A flat-faced cone, 5.0 inches in diameter with four hemispherical 
depressions, was flight tested to obtain heat-transfer data. The data 
were reduced at Mach numbers of 5.0 and 6.3 and Reynolds numbers per 
foot of 25.9 x 10 6 and 29.93 x 10 6 , respectively. 
an increase in heating rate up to 93 percent at the depressions. 

The results indicate 

INTRODUCTION 

The National Aeronautics and Space Administration is interested in 
blunt-nose shapes for reentry applications, and recent research has 
shown that the flat face is a promising configuration because of its 
lower stagnation-point heat transfer and lower total heat input during 
laminar-flow conditions. Possible use of a flat face as the nose on 
reentry vehicles raises the question of the possible effects of damage 
from countermeasures or meteoroids. Therefore, the Langley Pilotless 
Aircraft Research Division has conducted investigations to determine 
the local heating about simulated damage points in the form of hemi- 
spherical depressions. The data presented in this paper are the result 
of a flight test made at the NASA Wallops Station by using a propulsion 
system consisting of two stages of solid-propellant rocket motors; the 
first stage was a Nike booster (M5 JATO) and the sustainer was a Recruit 
motor (JATO XMI-9 E l ) .  

truncated cone with a 5.0-inch-diameter flat face. The flat face was 
indented with four hemispherical depressions of various sizes placed 
at various stations. The data are presented primarily for Mach numbers 
of 5.0 and 6.3 and Reynolds numbers per foot of 25.9 x 10 6 and 

The test configuration was ‘a 141” half-angle 
2 

6 29.93 x 10 , respectively. 
* 
Title, Unclassified. 
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SYMBOLS 

specific heat, Btu/( lb) (%) P C 

M Mach number 

9 

r radius, ft 

T temperature, OR 

t time, sec 

X radial distance f r o m  stagnation point, ft 

P density, lb/cu ft 

7 thickness, ft 

Subscripts: 

t stagnation conditions 

W conditions at wall 

Abbreviations : 

TC . thermocouple 

EQ. SP. 

heating rate, Btu/( sq ft) (sec) 

equally spaced (see fig. 6) 

MODEL AND TEST 

Model 

L 
5 
4 
3 

Figure 1 shows a dimensioned sketch of the model and booster system, 
and figure 2 shows the general configuration of the model on the launcher. 
The propulsion system consisted of a Nike booster, stabilized by four 
2- 1 -square-foot fins, and a Recruit sustainer, stabilized by a loo half- 
2 
angle flare. 
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Figures 3, 4, and 5 show detailed views of the nose. The telemeter 
and batteries are contained in a cone-cylinder section just ahead of the 
Recruit motor. 

The flat face was made from 0.050-inch-thick Inconel and was finished 
to a surface roughness of 6 microinches as measured by a profilometer. 
Actual skin-thickness measurements made at each thermocouple location 
are presented in table I. The nose was supported in compression by a 
ribbed, mild steel form coated with aluminum oxide for insulation pur- 
poses. The configuration was a truncated cone .2.258 inches long with a 
semivertex angle of 14.5', a base diameter of 6.424 inches, and a tip 
diameter of 5.0 inches. 

The flat face of the model was impressed with four  hemispherical 
depressions. Three of the depressions had a radius of 0.25 inch and 
were placed at stations x/r of 0.333, 0.667, and 1.00. The fourth 
depression, with a radius of 0.30 inch, was placed at a station x/r 
of 0.677. Details of this model are shown in figure 6. 

Instrumentation 

The model was equipped with four channels of telemetry, two of 
which were devoted to thermocouples and the other two were devoted to 
longitudinal accelerometers. The flat face of the model was instru- 
mented with 18 thermocouples, 6 in a ray extending out from the center 
on one channel and 12 in the various depressions on the second channel. 
All thermocouples were No. 30 chromel-alumel wire and were welded to the 
inside surface of the flat face. The entire thermocouple arrangement is 
shown in figure 6. 

This model was also instrumented with two longitudinal accelometers 
to supply velocity and drag data. However, satisfactory velocity data 
were obtained by a CW Doppler radar set, and no drag data were received 
because of telemeter failure. 

Just prior to launching the flight model, atmospheric conditions 
were measured by means of radiosondes that were tracked by a Rawin set 
AN/GMD-IA. 
and the space-time coordinates were plotted by an NASA modified 
sCR-581 radar set. 

Model velocities were obtained with a CW Doppler radar set, 

Flight Test 

The model was launched at an elevation angle of 60°. The Nike motor 
boosted the model to a Mach number of 2.71 at 3.5 seconds, and the Recruit 
motor accelerated it to a Mach number of 7 at 5.8 seconds. Figure 7 shows 
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the t i m e  h i s to r i e s  of Mach number, a l t i tude ,  and Reynolds number f o r  
t h i s  model. 

Temperature data were received from zero time t o  6.0 seconds, a t  
which time the telemeters fa i led .  It should be noted that a t  the time 
of the telemeter fa i lure ,  the model skin temperature w a s  nearly a t  the 
melting point of Inconel. 
high air loads caused the telemeter fa i lure .  

It i s  possible that this  i n  conjunction w i t h  

DATA REDUCTION L 
5 
4 
3 The var ia t ion of the measured skin temperatures w i t h  time i s  pre- 

sented i n  figure 8. 
of the temperatures on the f la t  face or i n  the depressions. 
tu re  scales  of figure 8 are staggered t o  allow ve r t i ca l  separation of 
t h e  curves. 

These curves a re  arranged i n  groups f o r  comparison 
The tempera- 

The heating rates presented i n  figure 9 were calculated for  each 
thermocouple location by using the formula 

The value 
model. 
the points.  
t o  be negligible f o r  the times considered. 

dTw/dt w a s  determined from the temperature his tory of the 
T h i s  value w a s  then plot ted and a smooth curve w a s  fa i red  through 

Radiation and conduction e f f ec t s  were estimated and found 

No pressure measurements were made on t h i s  model; however, the 
pressure d is t r ibu t ion  and the velocity fo r  a f la t  face as given i n  ref-  
erence 1 were assumed t o  hold here. T h i s  was f e l t  t o  be a reasonable 
assumption since these parameters are essent ia l ly  invariant w i t h  Mach 
number above a Mach number of approximately 2. 

A time his tory of the heating r a t e  reduced from the temperature 
time h i s to r i e s  and presented f o r  the time in te rva l  of 4 seconds t o  
telemeter f a i lu re  i s  given fo r  each thermocouple location i n  figure 9. 
Theoretical values for  the laminar heating r a t i o  
from the theory given i n  reference 2 by using the nondimensionaltem- 
perature parameter as given i n  reference 3 .  

q qt were calculated I 

The theore t ica l  heating r a t e  for turbulent flow w a s  calculated from 
reference 4 by using the theory of reference 5 .  For these calculations, 
the adiabatic-wall temperature w a s  assumed t o  be constant over the f la t  



, 

5 

L 
5 
4 
3 

face.  
t o  the s t a t ion  of thermocouple 6 .  

Actually it varied less than 1 percent from the stagnation point 

RESULTS AND DISCUSSION 

Figure 10 presents values of q qt a t  Mach numbers of 5 and 6.3 I 
f o r  each thermocouple location along w i t h  the  theoret ical  values fo r  
laminar and turbulent flow along a smooth f l a t  face.  The heating r a t e s  
calculated from the ray of thermocouples along the f la t  face f a l l  on or  
below the theoret ical  laminar-flow curve. Thus, it is  probable that 
i n  the absence of the depressions, flow over the en t i r e  face would have 
been laminar. The heating rates i n  the hemispherical depressions indi- 
cate t rans i t iona l  and turbulent flow. 

The experimental r e su l t s  show that, although the heating rates i n  
the depressions nearest the stagnation point a re  lower than those i n  
the p i t s  near the edge of the m o d e l ,  the flow i s  more nearly turbulent 
about the inboard p i t  than about the outboard p i t .  T h i s  can be seen 
from figure 10 by comparing the data points w i t h  the  turbulent-theory 
curve a t  x/r 
the theory curve a t  x/r stat ions greater than 0.5. 

contrasts greatly with the behavior i n  p i t s  a t  the stagnation point.  
Reference 6 shows the heat-transfer coefficient a t  the bottom of a 
hemispherical p i t  a t  the stagnation point of a cone-hemisphere nose t o  
be one-tenth the stagnation value of a smooth hemispherical nose at a 
Mach number of 8. Reference 7 shows tha t  the heat-transfer coefficient 
a t  the bottom of a hemispherically concave nose i s  about 0.08 of the 
stagnation value of a hemispherically convex nose of the same diameter. 
Some unpublished data obtained at the Langley Research Center from the 
ceramic-heated je t  ( p i l o t  model) on f la t - face  models w i t h  cylindrical  
p i t s  a t  the stagnation points a l so  show that depressions at the stagna- 
t i o n  point reduce the heating r a t e .  

s ta t ions l e s s  than 0.5 and by comparing data points w i t h  

The behavior of the heating rates i n  the depressions on th i s  model 

CONCLUSIONS 

From the experimental data presented, the following conclusions 
may be drawn: 

1. Flow over the face of the model was basically laminar. 
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2. Depressions on the nose tripped the boundary layer and caused 
higher local heating corresponding to either transitional or turbulent 
flow. 

3. The measured heating rates indicated that the flow about the 
inboard depression was more nearly turbulent than that about the out- 
board depression. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., June 29, 1959. 
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TABL;E I 

SKIN THICKNESS AT TRERMOCOUPLE LOCATIONS 
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Phermocouple 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

.1667 

333 

.500 

.667 

833 

.920 

965 

.526 

Skin 
;hickne ss, 

in. 

0 .&g 

.051 

.051 

050 

.051 

.050 

eo59 

057 

055 

Thermo couple 

10 

11 

12 

13 

14 

15 

16 

1-7 

18 

3.667 

.808 

.682 

595 

.667 

737 

.263 

-333 

.404 

7 

Skin 
thickness 

i n .  

0 *055 

- 055 

0 055 

-059 

057 

059 

059 

- 057 

* 059 

... . . . ..~.. .-."~ 
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Figure 2.- Model on launcher. 
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Figure 3. -  Side view of model. L-58-3159-1 
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Figure 4 .- Front view of model. L-58-3160 
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